

Modern PHP Developer

Table of Contents

Introduction
Composer
Package Manager
Composer vs PEAR
Install Composer
Use Composer
Power of community
PSR
PSR-0 & PSR-4
PSR-1 & PSR-2
PSR-3 & PSR-7
PSR Specifications
PDO
Why use PDO?
Running PDO Queries
Data manipulation
PDO API
Iterator
Your first iterator class
Why iterator?
SPL Iterators

ArrayObject vs SPL Arraylterator
Iterating the File System

Peeking ahead with Cachinglterator

Generator
Exception
When to use Exception

How to use Exception

Create your first custom exception

SPL exceptions

1.1
1.2
1.3
1.4
1.5

21
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
54

Digital Healthcare Solution

Modern PHP Developer

RuntimeException
TDD

PHPUnit

TDD by example

5.5

6.1
6.2

Modern PHP Developer

To all aspiring developers, keep learning and stay awesome!

Composer

Package Manager

In general, a block of code forms a method, a group of methods forms a class and a set of
classes form a package.

A reusable package can be dropped into any project and be used without any need to add
functionality to it.

A package exposes APls for clients to achieve a single goal.

Packages help our applications achieve DRY (Don't Repeat Yourself), a principle of software
development, which reduces repetition of information of all kinds.

In most cases, packages have dependencies. When "Package A" requires "Package B" in
order to work, we say "Package A" depends on "Package B". It is quite common to see that
a package has a chain of dependencies("Package A" depends on "Package B", "Package B"
depends on "Package C", the list goes on).

Imagine there is no such thing as a package manager. What would we need to do in order to
get "Package A", which has a dependency of "Package B" to work? First we download
source code of "Package A", then discover it depends on "Package B", so we try our best to
find source code of "Package B". It might still not work, because we also need to make sure
that we download the correct version of "Package B". The story can go on and on. We are
only talking about one single dependency here; it would soon turn to be a nightmare if
"Package A" has multiple dependencies or there is a chain of dependencies.

We do need a package manager, a package manager that can solve all of these
dependency headaches for us.

Composer vs. PEAR

PEAR

Prior to Composer, there was something called PEAR. If you started with PHP early on, you
may be aware of PEAR, as it has been in existence since 1999. PEAR is made for the
purpose of promoting reusable packages, similar to Composer. However, it has been
discouraged by developers due to the following reasons:

¢ Unlike Composer, PEAR is a system-wide package manager. When you have multiple
projects, which share the same dependencies, but each has different versions, this
approach causes a lot of confusion and frustration.

e A certain number of up-votes is required in order to have your code accepted into
PEAR's repository. This discouragement slows down growth of its repository. At the end
of day, developers want to write code, not promote code.

Composer

Composer is an application-level package manager for PHP. It is inspired by NodeJs's NPM
and Ruby's Bundler, and is currently the recognized package manager by the community.

The Composer ecosystem consists of two parts: the Composer, which is the command-line
utility for installing packages, and the Packagist, the default package repository.

An application-level package manager means it manages dependencies on a per project
basis. This makes managing multiple projects easy and keeps your machine clean as it only
downloads packages to your project directory.

Everyone is welcome to submit their packages to Packagist. Unlike PEAR, there is no need
to get up-votes whatsoever. You do, however, get starts if people like your packages.

Packagist

As mentioned earlier, Packagist(packagist.org) is the default package repository for
Composer. As of the time of this writing, September 2015, 69,568 packages are available on
Packagist. Next time you need a PHP package, instead of building one from scratch on your
own, there is a good chance you can find it on Packagist. As a developer, it is recommended
you leverage the power of Packagist as it will save you countless hours and energy.

Now, it's time to get our hands dirty.

Install Composer

We will assume you are a Mac user.

There are two scopes when installing Composer: local scope and global scope. From
professional experience, we suggest installing Composer globally on your system. After all, it
is very likely we will use Composer to manage dependency for every PHP project. Global
installation saves us a lot of hassle.

Global Installation
Run commands below from your Terminal to install Composer globally:
curl -sS https://getcomposer.org/installer | php

mv composer.phar /usr/local/bin/composer

If you encounter any errors related to permissions, run commands above in sudo mode
(append sudo to each command)

Local Installation

Run commands below from your project root directory to install Composer locally:

curl -sS https://getcomposer.org/installer | php -- --filename=composer

For a more detailed installation guide on Composer, check out:
https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx

Verification

To verify if Composer is installed properly, run command below from the directory Composer
is installed (Anywhere if Composer is installed globally).

composer about

If you see an output similar to the one below, you are ready to go.

https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx

Composer - Package Management for PHP
Composer is a dependency manager tracking local dependencies of your projects and librari
See https://getcomposer.org/ for more information.

{ S

Use Composer

Composer is now ready to use. Let's demonstrate its usage through a simple example:

Imagine we have completed an awesome project and we want to generate simulated data,
for example, people's names and addresses, to show our client. It would be cool if the data
is random and yet makes sense, so the demo would look real. One solution would be to type
some fake names and addresses, store them in an array, then pick entries out of the array
randomly using array_rand. As you have probably realized, this solution sounds tedious and
impractical. What happens if we need hundreds of users' data? We need a savior.

It turns out there is a package on Packagist, which does exactly what we need. The best
part is that it is even called Faker.

Let's install Faker using Composer.

From our project root folder, run command:

composer require fzaninotto/faker

It will take Composer a few seconds to download the required files. Under the hood,
Composer downloads the zip file of Faker from Github. Besides downloading the required
package, Composer will also create some internal files, which we will look into later.

Now take a look at our project directory and you should be able to discover some newly
created folders and files as shown below:

composer.json composer.lock vendor

composer.json

This file describes the dependencies of your project. It is a simple JSON file and shows you
what packages are installed in your project.

Whenever you run composer require from command line, composer.json and composer.lock
will be automatically updated to reflect package change. Conversely, if you add a package to
composer.json file, you run composer install to download the new package. If you want to

update all packages' versions to the latest specified by their version constraints, you can run

composer update .

There are three basic commands of Composer:

https://packagist.org/packages/fzaninotto/faker

composer require

This command is used to add an individual package to the dependencies. Whenever we
need a new package, we can just run it. It is convenient because we do not have to touch
the composer.json file at all.

Another usage of this command is to update an existing package's version. For example, we
have installed the latest version(1.4.0) of Faker using composer require fzaninotto/faker as
Composer fetchesthe latest version of a package if we do not specify its version constraint.
Since our application is incompatible with 1.4.0, we need to install 1.2.0 in order to run

composer require fzaninotto/faker:1.2 0 . It will download a specific package and update all
relevant Composer files accordingly.

composer install

This command first looks for composer.lock file, if it is present, exact version of the packages
defined, will be installed and composer.son will then be ignored. If it is not present, the
command will check packages defined in the composer.json file and download the latest
versions of the packages that match the supplied version constraints. Can you spot the
difference? When composer.lock is used, exact versions are downloaded, whereas using
composer.json, Composer will always attempt to retrieve the latest version of a package that
matches the supplied version constraint. When version constraint is defined as an exact
number, both actions have the same result. However this is rarely the case.

This command is used when we begin a new project - we define a list of dependencies and
run this command to get all packages installed. Or, when kick-start someone else's project,
we check out their code from Github and run this command to get all dependencies installed.

In some deployment strategies, we run this command in production to install the application
after pulling its source code from repository.

composer update

This command only reads from composer.json file which is different from composer install .
It updates existing packages to the latest versions that match supplied version constraints
defined in composer.json. Meanwhile, it downloads any new packages added to
composer.json file.

We can use this command to update existing packages' versions, similar to composer
require . The difference is that composer require does not require us to touch the
composer.json file manually, it feels more intuitive.

The fact that this command only reads from composer.json brings up a common pitfall,
which is running this on production. We should never run composer update in production.
Here's why:

If your application is working well with Faker 1.2.0 on your local development environment,
you push your code to production and run composer update . Without your knowledge, the
latest version of Faker has already been updated to 1.4.0, so Composer downloads version
1.4.0 of Faker in production, because you have defined its version constraint as
'fzaninotto/faker: 1.*" in composer.json. As a result, your production is now using a different
package from your development. This is not the intended outcome.

We recommend deploying composer.lock along with compose.json and running composer
install in production. This will ensure your production has the same packages as your
development.

For more in-depth information about package version constraints and how to define them.
Click here.

composer.lock

While composer.json file lets us define packages we need using versions constraints,
composer.lock tracks exact versions of packages installed in our project. In other words, it
stores the current state of our project. This is a very important point to remember.

The fact that composer install reads first from composer.lock, makes it a much safer
command to use. Here's why:

If you delete vendor completely from the project, this will remove all packages Composer
downloaded. Now run composer install again and it will obtain the exact versions of
packages as it previously did.

This brings up our next point. If we are using a version control system such as Git, should
we commit composer.lock?

The answer is "It Depends". Most of time we want to make sure everyone is sharing identical
source code at anytime. So we will commit composer.lock. This is very common since most
of us work with a team. The rare case of not committing composer.lock is when we develop
a package(library), because users rarely need to run composer install in our package.

Composer gives us a lot of flexibility in using its commands, however there are a couple of
rules we try to follow to prevent liability.

® composer install is our friend - use it in production for deployment.

A fair standard Composer workflow:

https://getcomposer.org/doc/articles/versions.md

Defined some dependencies in composer.json

o Run composer install

Need an individual package

o Run composer require some/package

Need multiple packages
o Define them in composer.json file and run composer update

Want to test out one single newly released package

o Run composer require some/package:new-version

Ready to test out all the latest versions of packages released
o Run composer update

Autoloading

You have probably used a lot of include/require statements. The problem with These
statements is that, they make our code cluttered. And the worst part is, whenever we update
our directory structure, we end up doing a lot of find&replace work.

The solution is autoloading. It allows you to define paths to search for classes so you do not
have to do it manually with include/require . But of cause, we should keep in mind that
under the hood, autoloading is still using include/require .

Now, let's jump back to our awesome project. There is one place we have not really
explored yet, and that is the vendor directory created by Composer. By default, Composer
downloads all packages to this directory.

Composer also generates a vendor/autoload.php file, which provides autoloading to us for
free, making it really easy to use vendor code.

In our case, we want to use Faker so we can simply include the below file and Faker will be
autoloaded.

require _ DIR__ . '/vendor/autoload.php';

Now we can just start using Faker.

$faker = Faker\Factory::create();

echo $faker->name;

Power of community

You should now have a fair understanding of Composer. Start using it to manage your
project's dependencies. We guarantee it will make your and your co-workers' lives much
easier. Next time your project needs something, start looking for them on Packagist.
Embrace the power of community!

PSR

Prior to PHP Standards Recommendation (PSR), there were no truly uniformed standards
for writing PHP code. For instance, for coding style, some people preferred Zend Framework
Coding Standard, and some liked PEAR Coding Standards, and still others chose to create
their own naming conventions and coding style.

A group of people, representing various popular PHP projects came together in 2009 and
formed something called Framework Interoperability Group(FIG). The purpose of FIG is for
project representatives to talk about the commonalities between their projects and find ways
to work together.

At the time of this writing, there are six accepted PSRs: two of them are about autoloading,
two of them are related to PHP coding style and the remaining are about interfaces.

In this chapter, we will discuss each PSR briefly. The purpose of this chapter is to introduce
you to the ideas of PSRs. For further details on each one, the respective link are provided.

http://framework.zend.com/manual/1.12/en/manual.html
https://pear.php.net/manual/en/standards.php
http://www.php-fig.org/psr/

PSR-0, PSR-4

Both PSR-0 and PSR-4 are standards for autoloading. If you aren't familiar with autoloading,
it is basically a way for PHP to include classes without writing cluttered include/require
statements everywhere.

Let's take a look at the history of autoloading. This will give you a clear picture how
autoloading in PHP has involved during the years.

In PHP language, we have to make sure a class's definition is loaded prior to using it.
Normally, we will create our PHP classes in their own class files for better organization. Then
we will load them with require or include statements in the files they are being called.

include 'manager.php';
$manager = new Manager();

This approach quickly raises some issues. Imagine you have tens of external classes to be
used in a file and you start writing lines of require / include statements right at the
beginning of a source file. They are ugly and clutter our codebase with repetitive lines of
include statements.

Starting in PHP 5, a new magic function was introduced to solve this issue:

void __autoload (string $class)

__autoload is essentially a helper function, doing what we were doing with include
statements. We can define this function anywhere in our codebase, and PHP will
automatically use this function to load a class's file when an undefined class is called. This is
the last chance to load a class definition before PHP fails with an error.

function __autoload($class)

{
$filename = 'classes/' . $class . '.php';
if (file_exists($filename)) {
include_once($filename);
}
}

$manager = new Manager();

__autoload quickly became obsolete due to the fact that it can only allows one autoloader
function. What this means is that since autoload is the one and the only one magic that
PHP engine will call, we need to define this particular magic function wherever we want an
autoloading feature. Theoretically, this includes every file in a solid object-oriented
codebase.

PHP 5.1.2 was shipped with another autoloading function(spl_autoload register) for
coping with __autoload 's limitation. spl autoload register is a replacement for

__autoload , and it provides more flexibility. It works by registering PHP user land functions
with the autoload queue. It effectively creates a queue of autoload functions, and runs
through each of them in the order in which they are defined. This means we can have
multiple autoloader functions and there is no need for creating "““autoload™ " function in
each one of our source files anymore.

Autoloading was such a great idea that every project started to use it. Inevitably everyone
created their own version of autoloader as uniform standards were lacking. Clearly, PHP
desperately needed a standard for autoloader, which is how PSR-0 was born.

Today, Autoloader standard has evolved significantly. Even PSR-0 is officially depreciated
due to some constraints, such as its unfriendiness to Composer.

The latest accepted autoloader standard is PSR-4. You should follow PSR-4 to create your
desired autoloader. For specification of PSR-4, please read more from its official page.

http://www.php-fig.org/psr/psr-4/

PSR-1, PSR-2

PSR-1 and PSR-2 are for PHP coding standards. PSR-1 focuses on the basics, whereas
PSR-2 expands upon PSR-1 and provides a more comprehensive coding style guide.

PSR-1 lists a set of simple rules for naming conventions and file structures. Its main purpose
is to ensure a high level of technical interoperability between shared PHP codes. In a project
that is incorporated with various packages, it can be a mess if each uses different coding
standard, which is what PRS-1 was designed to solve.

A quick overview of PSR-1:

¢ Files MUST use only <?php and <?= tags.

e Files MUST use only UTF-8 without BOM for PHP code.

e Files SHOULD either declare symbols (classes, functions, constants, etc.) or cause side
effects (e.g. generate output, change .ini settings, etc.) but SHOULD NOT do both.

¢ Namespaces and classes MUST follow PSR-O0.

¢ Class names MUST be declared in StudlyCaps.

e Class constants MUST be declared in all upper case with underscore separators.

e Method names MUST be declared in camelCase.

Building on top of PSR-1, PSR-2 provides more comprehensive guidelines with more
detailed rules as basic as code indention. It also covers varicose aspects of coding style,
from naming conventions to namespace, classes, properties, methods, control structures
and closures. It is possible to find any specification you need from PSR-2. Adapting your
codebase to this standard for interoperability is highly encouraged.

PSR-3, PSR-7

After autoloading and coding standards, we can finally associate PSR with PHP code. These
are PSR-3 and PSR-7. PSR-3 contains a logger interface and PSR-7 contains interfaces for
HTTP message interfaces.

PSR-3

PHP desperately needed a standard for Logger interface before PSR-3. Logging is such a
common task that every project built its own version of logger. Without a standard, the only
way to use a third-party logger was to write a wrapper around it, so it could work with our
existing codebases. It was not only a painful process, but also felt wrong, because after all,
they were all doing the same type of work: logging. We should be able to switch them
around.

PSR-3 provides common interface for logging libraries. As long as they implement the PSR-
3 logger interface, they should be theoretically interchangeable with any other PSR-3 logger
libraries.

Let's take a look how PSR-3 Logger interface improves our code reusability in a concrete
example.

Suppose we have written a simple authentication class User below. It appends an audit
message to a log file once an user logins in successfully. It is using our custom logger class,
which exposes a single method addmessage .

class User

{
private $logger;
public function __construct($logger)
{
$this->logger = $logger;
}
public function login($username, $password)
{
if ($this->validUsernameAndPassword($username, $password)) {
$this->logger->addMessage(sprintf('user %s login at %s', $username, date('m/d
}
}
private function validUsernameAndPassword($username, $password)
{
70 oo«
}
}
J E— o]

Our custom Logger class is injected to User class following dependency injection principle,
this seems to make our User reusable. We can switch to other logger class simply via the
constructor. But if we take a look closely, we can't do that, User class is still highly coupled
to our custom Logger class, it is aware of custom method addmessage . If we use another
third-party logger library in our code, it won't work, because they do not have a method
called addMessage

We can modify our code to use PSR-3 Logger interface instead. According to Dependency
Inversion principle SOLID, we should depend upon abstractions rather than concretions.
PSR-3 Logger interface provides a perfect abstraction for our case.

class User

{
private $logger;
public function __construct(PsrLogLoggerInterface $logger)
{
$this->logger = $logger;
}
public function login($username, $password)
{
if ($this->validUsernameAndPassword($username, $password)) {
$this->logger->info(sprintf('user %s login at %s', $username, date('m/d/Y h:i
}
}
private function validUsernameAndPassword($username, $password)
{
/0 ocoo ooo
}
}
J E— o]

By changing a few lines of our code, we have replaced our custom logger with
PsrLogLoggerinterface. Now our code is highly reusable. We can use, switch to, or
change to, any third-party logger library that is compliant with with PSR-3 Logger interface.

PSR-7

HTTP messages are essential for web applications. Every action a user takes is a
combination of a HTTP request and HTTP response. PSR-7 is the latest accepted standard.
It provides abstractions around HTTP messages and the elements composing them. It will
have a huge impact on projects that implement details of HTTP messages, since HTTP is a
rather complex subject and most of vendors have their own implementation, it is a lot of
refactoring for vendors to adapt PSR-7.

As a user of HTTP messages, we can now deal with HTTP messages universally thanks to
PSR-7. Similar to PSR-3, PSR-7 makes our lives much easier to build a reusable codebase.

PSR Specifications

We have summarized each PSR briefly and you should now have an understanding of what
each PSR is for.

You should refer to the official page whenever you need detailed specifications of each PSR.

e PSR-1: http://www.php-fig.org/psr/psr-1/
e PSR-2: http://www.php-fig.org/psr/psr-2/
e PSR-3: http://www.php-fig.org/psr/psr-3/
e PSR-4: http://www.php-fig.org/psr/psr-4/
e PSR-7: http://www.php-fig.org/psr/psr-7/

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-7/

Persist with PHP Data Objects

PHP Data Objects, most commonly known as PDO, is a PHP extension built to solve
database access problems. It provides a unified interface to access databases.

PDO creates an abstraction layer for data-access, so developers can write portable code
without worrying about the underlying database engines. In layman's terms, you use PDO to
develop an application using MySQL as the database storage. If you want to switch to
PostgreSQL at any point in time, all you need to do is to change the PDO driver. No other
code change is required.

PDO consists of three main types of objects: They are PDO object, PDOStatement object
and PDOException object. We should not necessarily neglect the PDO Drivers, but these
three types of objects together form the main interface of the PDO extension.

Why use PDO?

If you have developed any MySQL database driven application before, but have never tried
PDO, you must be wondering what the benefits are to use PDO, especially when comparing
it to its two alternatives.

MySQL

The oldest way to interact with MySQL is to use mysql extension. It was introduced in PHP
2.0.0, however it was deprecated as of PHP 5.5.0, and has already been removed in PHP
7.0.0. It is not recommended to use this extension at all given the factor that it is not
supported in newer PHP versions.

MySQLi

Since PHP 5.0.0, an improved version of mysql extension, known as mysqli was
introduced. It brought a lot of benefits over the mysql extension, such as object-oriented
interface, prepare statements, multiple statements, transaction support, enhanced
debugging capabilities and embedded server support.

The main differences between MySQLi and PDO are:

e PDO supports client-side prepared statements, whereas MySQLi does not. We will
discuss client-side prepare statements in details in later sections. It basically means it
will emulate prepared statement if the chosen database server does not support it.

e MySQLi supports both object-oriented APl and procedural API, whereas PDO
religiously uses objected-oriented API.

¢ The biggest advantage of using PDO is to write portable code. It enables developers to
switch databases easily, whereas MySQLi only supports the MySQL database.

Ultimately, we recommend using PDO to build your applications.

¢ |t enables developers to write portable code.
¢ |t encourages object-oriented programming.

Lastly, we want to emphasize that, by no means are you forbidden to use MySQL.i.

In the following sections, we will start with some common ways of running queries using
PDO. Then we will demonstrate how to perform various MySQL data manipulation
statements using PDO. Finally, we will focus on a few PDO APIs, which serve the same
purpose but in different ways.

Modern PHP Developer

Why use PDO?

25

Running PDO Queries

We summarize the different ways of running PDO queries into four categories, classified by
number of steps involved from carrying out the query to getting its result. These categories
were created to ease the efforts of remembering PDO APIs and include:

® exec
e query fetch

e prepare execute fetch

e prepare bind execute fetch

Establish database connection

Before we get into each category, you will first need to be familiar yourself with establishing
a database connection using PDO. This is the absolute the fundamental of PDO, as it is
used in every piece of code below:

try {
$dbh = new PDO('mysql:host=localhost;dbname=customers', S$user, $pass);

} catch (PDOException $e) {
die($e->getMessage());
}

To establish a database connection, we instantiate a PDO object with three parameters. The
first parameter specifies a database source (known as the DSN), which consists of the PDO
driver name, followed by a colon, followed by the PDO driver-specific connection syntax.
The second and third parameters are database username and password.

An exception will be thrown if the connection fails. You can catch the exception and handle it
gracefully. Kudos to exception in this case, we no longer need to put the connectionina if
statement due to a clean and easy to read code base.

In the following code samples, we will neglect this piece of code, to avoid clutter. Keep in
mind, you will always need to make the connection first before proceeding with any PDO
operations.

exec

This is the simplest form of running a query. We can use it to run a quick query and normally
we do not expect it to return any results.

$dbh->exec('INSERT INTO customers VALUES (1, "Andy")');

Though PDO::exec does not return the result corresponding to your query, it does return
something. Regardless of what query you run with PDO::exec, it returns the number of
affected rows on success. It also returns Boolean FALSE on failure.

A caveat when checking the return type: since it PDO::exec returns 0 when there is no row

affected, we should always use === comparison operator to verify success of running the
method.
if (FALSE === $dbh->exec('INSERT INTO customers VALUES (1, "Andy")')) {

throw new MyException('Invalid sgql query');

3

If you are building the query string with user input and manually handling security issues as
such escaping characters, you should use other alternatives, which we will discuss later.

query fetch

When running query such as SELECT statement, we do expect a return of corresponding
results. The easiest way of accomplishing this is use:

$statement = $dbh->query('SELECT * FROM customers');

while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {
echo $row['id'] . " ' . $row['name'] . PHP_EOL;

}

Note that methods s$dbh->query() and $statement->fetch() , are how we name our
categories, by the sequences of calling PDO APIs.

Because PDO::query returns a result set as a PDOStatement object on success (It will
return Boolean FALSE on failure, do similar check as PDO::exec if you want to verify).
PDOStatement class implements the Traversable interface, which is the base interface for
Iterator, meaning it can be used in an iteration statement as such as a 1oop . Naturally,
there is a short version of previous code:

foreach ($dbh->query('SELECT * FROM customers', PDO::FETCH_ASSOC) as $row) {
echo $row['id'] . ' ' . $row['name'] . PHP_EOL;
}

You might have noticed, when calling either PDO::query or PDOStatement::fetch, we have
supplied a flag parameter. This parameter specifies what type of data structure we want from
the callee.

A few of the options include:

e PDO::FETCH_ASSOC: returns an associative array indexed by column name.

e PDO::FETCH_NUM: returns an numerically indexed array.

e PDO::FETCH_BOTH (default): returns an array indexed by both column name and 0-
indexed column number as returned in your result set. (Combination of
PDO::FETCH_ASSOC and PDO::FETCH_NUM).

There are a lot more options. We recommended that you take a quick look at them at PHP
Manual. Though this parameter is optional, we should always specify it unless we really
want an array indexed by both column name and number. PDO::FETCH_BOTH takes twice
as much memory.

prepare execute fetch

We frequently need to accept user's input in order to run a database query. There are two
major concerns if we were to use A query fetch approach.

First, we will have to make sure the sqgl query passed to PDO::query is safe. Escaping and

quoting the input values must be well taken care of. Second, PDO::query executes an SQL
statement in a single function call, which means if we need to run the same query multiple

times, it will use multiple times of resources. There is a better way of doing this.

PDO introduces prepare statement for the first time. So what is prepare statement?
According to Wikipedia.

In database management systems, a prepared statement or parameterized statement
is a feature used to execute the same or similar database statements repeatedly with
high efficiency. Typically used with SQL statements such as queries or updates, the
prepared statement takes the form of a template into which certain constant values are
substituted during each execution.

Prepare statement solves two concerns raised above. It not only improves the efficiency of
running multiple similar queries, but also takes care of escaping and quoting user input
values.

Below is how we implement prepare statement using PDO:

http://php.net/manual/en/pdostatement.fetch.php#refsect1-pdostatement.fetch-parameters

$users = ['Andy', 'Tom'];
$statement = $dbh->prepare('SELECT * FROM customers where name = :name');

foreach ($users as $user) {
$statement->execute([':name' => $Suser]);

while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {
echo $row['id'];

}

Note the steps we have taken here:

e PDO::prepare is used to create a sql query containing a variable parameter. Naming
convention for parameters are either named variables prefixed by a colon(:) or a
question mark (?).

e PDOStatement::execute is called to execute a query with parameters' value. When ? is
used in the prepare statement, they are numbered parameters. We can bind the values
using a numeric indexed array. Note in the foreach , it uses the same statement to
carry out the query after binding the value. It returns Boolean FALSE upon failure. We
can use PDOStatement::errorinfo() to get the error information associated with the
operation.

e PDOStatement::fetch is used to fetch result with desired data structure.

prepare bind execute fetch

A minor issue you might have OBSERVED in previous code is what happens when there are
a lot of parameters in the prepare statement. We can easy create code piece like this:

$statement->execute([':name' => $user, ':mobile' => $mobile, ':address' => $address ,':co

j S— s

The list can go on and on. This makes code very difficult to read. However, a more important
thing to notice here is that, PHP will cast user input value to match its database field type if
they do not match exactly, which is prone to bugs.

Here is where PDOStatement::bindValue comes in to save. The recommended way of
running previous is:

$users = ['Andy', 'Tom'];
$statement = $dbh->prepare('SELECT * FROM customers where name = :name');

foreach ($users as $user) {
$statement->bindvalue(':name', $user, PDO::PARAM_STR);

$statement->execute();

while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {
echo $row['id'];

}

Instead of using PDOStatement::execute to bind value to parameter, we used
PDOStatement::binValue. It adds a few significant improvements to our code:

¢ Readability: it makes the code easy to read for other developers, as it indicates the
exact data type a parameter should accept.

¢ Maintainability: The third parameter, which specifies datatype of passing variable,
prevents PHP from casting incompatible datatype, which is prone to bug. In the long
run, it also makes the code easier to maintain, as future developer will be able to spot

the datatype at a glance.

These four techniques are definitely not official: they are just naming conventions made to
memorize PDO APIs. There is no need to follow them strictly. In fact, most of time we

combine these techniques together.

Data manipulation

Let's put what we have learned into action. In this section, we will use PDO to accomplish
some of the most common MySQL tasks.

Sample database table

We will need a database table to play around with.

For demonstration purpose, we will create a very simple database table:

CREATE TABLE IF NOT EXISTS "customers” (

“id® int(11) NOT NULL AUTO_INCREMENT,

“name’ varchar(100) NOT NULL,

PRIMARY KEY (id")

) ENGINE=InnoDB DEFAULT CHARSET=latinl AUTO_INCREMENT=1 ;

Insert data

Ouir first task is to insert some data into the table. For this use case, let's suppose we accept
data from a user input form via a POST request, and then we insert whatever data is from
the form into the customers table.

try {
$dbh = new PDO('mysql:host=localhost;dbname=inventory', 'root', 'root');

} catch (PDOException $e) {
die($e->getMessage());
$name = $_POST['name'];
$statement = $dbh->prepare('INSERT INTO customers (name) VALUES (:name)');
if (false === $statement) {

throw new Exception('Invalid prepare statement');

if (false === $statement->execute([':name' => $name])) {
throw new Exception(implode(' ', $statement->errorInfo()));

We are using the prepare->execute->fetch techinique in this code sample, except we
removed the fetch part since we do not expect it to return any result set.

e The first step is to connect to the database as usual.

e Then, we create a prepare statement. Note that we also handle failure case by throwing
an exception.

¢ And lastly, we execute the prepare statement. Failure case is also handled. We are able
to output useful information by calling PDOStatement::errorinfo method.

Update data

The second common task is to update existing data. Assume the use case is the same as
the previous case, except the user is able to pass in an additional parameter ($id).

try {
$dbh = new PDO('mysqgl:host=localhost;dbname=inventory', 'root', 'root');

} catch (PDOException $e) {
die($e->getMessage());
}

$id = $_POST['id'];
$name = $_POST['name'];

$statement = $dbh->prepare('UPDATE customers SET name = :name WHERE id = :id');

if (false === $statement) {
throw new Exception('Invalid prepare statement');

}

if (false === $statement->execute([':name' => $name, ':id' => $id])) {
throw new Exception(implode(' ', $statement->errorInfo()));

}

As you have probably guessed, beside the additional parameter $id ,the code is identical to
previous code sample.

Delete

The third common task is to delete an existing data record (similar use case here). User is
able to pass in a single parameter ($id), and the corresponding record should be deleted.

try {

$dbh = new PDO('mysql:host=localhost;dbname=inventory', 'root', 'root');
} catch (PDOException $e) {

die($e->getMessage());

$id = $_POST['id'];
$statement = $dbh->prepare('DELETE from customers WHERE id = :id');
if (false === $statement) {

throw new Exception('Invalid prepare statement');

if (false === $statement->execute([':id' => $id])) {
throw new Exception(implode(' ', $statement->errorInfo()));

Again, this is a very similar code sample as the previous one (prepare->execute->fetch
techinique with fetch part). That is the "beautify" of PDO - its object-oriented design makes
code easy to write.

Select

Our final task is to select all data records from customers, but this time, we won't ask for
user's input.

try {

$dbh = new PDO('mysql:host=localhost;dbname=inventory', 'root', 'root');
} catch (PDOException $e) {

die($e->getMessage());

$results = array();
$statement = $dbh->query('SELECT * FROM customers');
if (false === $statement) {

throw new Exception('Invalid query');

while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {
$results[] = $row['name'];

In this example, we have used the query->fetch technique. As we mentioned earlier and it
is worth mentioning again, when calling PDOStatement::fetch, it is a good habit to always
specify the fetch mode.

Now we have run through some quick samples of using PDO for various tasks. These
samples are very simple, yet they have showed us a very easy to use and consistent API
provided by PDO.

PDO API

So far, we have demonstrated some common PDO APIs. PDO still provides a lot more than
we have shown above. In this section, we will explore PDO APIs for the last time and try to
cover as many useful APIs as we can. It is nearly impossible to cover every aspect of this
topic but always keep in mind that there is a manual page that can be referenced when you
are in doubt. (PDO Manual page)

Fetch methods

We have covered one(PDOStatement::fetch) of the fetching methods used to retrieve result
sets. In fact, PDOStatement provides three additional fetching methods.

PDOStatement::fetchAll

Working similarly to PDOStatement::fetch, PDOStatement::fetchAll also accepts a flag as
first parameter, which is to specify fetch mode. We should always specify the fetch mode the
same way we do for PDOStatement::fetch method. It differs from PDOStatement::fetch in
that it returns all result at once.

http://php.net/manual/en/class.pdo.php

$statement = $dbh->query('SELECT * FROM customers');
$result = $statement->fetchAll(PDO: :FETCH_ASSOC);
print_r($result);

// Output
Array

(
[0] => Array
(
[id] => 2
[name] => TEST2
)

[1] => Array
(
[id] => 3
[name] => TEST2
)

[2] => Array
(
[id] => 4
[name] => TEST2

A caveat of this method is that, since it loads all result sets at once, it might result in heavy

memory usage depending on how much data is available. You should use this method with
attention.

PDOStatement::fetchColumn

A handy method for retrieving data from the desired column is PDOStatement::fetchColumn.
It returns a single column from the next row of a result set. It is similar to
PDOStatement::fetch, however it returns the next single column only instead of a next array
of result reset.

$statement = $dbh->query('SELECT id, name FROM customers');

while($result = $statement->fetchColumn(1)) {
echo $result . PHP_EOL;

}

PDOStatement::fetchColumn accepts a single parameter(column name) optionally. The
parameter is a 0-indexed number specifying the column to retrieve data from. When this
parameter is omitted, it defaults to column number O.

Two points to not when using this method:

¢ PDOStatement::fetchColumn will return Boolean FALSE when it reaches the end of the
result set, so it should not be used to retrieve Boolean type from the database.

e PDOStatement::fetchColumn moves its pointer one step forward when it is called, so
there is no way to retrieve another column from the same row. (Obviously the pointer
has already moved to the next row when we call it using different column number).

PDOStatement::fetchObject

This method is an alternative to PDOStatement::fetch() with PDO::FETCH_CLASS or
PDO::FETCH_OBJ style. Its purpose is to make our code easier to read when called
separately, when this method is called, it will return next result set as a PHP object:

$statement = $dbh->query('SELECT id, name FROM customers');

while($object = $statement->fetchObject()) {
print_r($object);
}

// Output

stdClass Object

(
[id] => 2
[name] => TEST2

)

stdClass Object

(
[id] => 3
[name] => TEST2

We can also pass in our custom PHP class as first parameter, PHP will instantiate one
instance of our custom PHP object with data retrieved and return it:

class MyClass

{

}
$statement = $dbh->query('SELECT id, name FROM customers');

while($object = $statement->fetchObject('MyClass')) {
print_r($object);
}

// Output
MyClass Object

(
[id] => 2
[name] => TEST2

)
MyClass Object

(
[id] => 3
[name] => TEST2

Bind methods:

Previously, we have used PDOStatement::bindValue. This method binds desired value to the
placeholder of the query. This method is not the only method for that task though.

bindParam

This method is almost identical to PDOStatement::bindValue and it's no surprise that some
people use these two methods interchangeably, however there is a very significant different
between these two methods, and it might cost you a fortune if you are not aware of it.

> Unlike PDOStatement::bindValue(), the variable is bound as a reference and will only be
evaluated at the time that PDOStatement::execute() is called.

Let's see what it means by example.

$user = 'Andy';

$statement = $dbh->prepare('SELECT * FROM customers where name = :name');
$statement->bindvalue(':name', $user, PDO::PARAM_STR);

$user = 'Tom';

$statement->execute();

echo $statement->fetchColumn(1);

// Output
Andy

$user = 'Andy';

$statement = $dbh->prepare('SELECT * FROM customers where name = :name');
$statement->bindParam(':name', $user, PDO::PARAM_STR);

$user = 'Tom';

$statement->execute();

echo $statement->fetchColumn(1);

// Output

Tom

Do you spot the difference? These two pieces of code are identical except one is using
$statement->bindParam and the other is using $statement->bindValue. The result produced
is entirely different.

PDOStatement::bindParam binds variable $user as a reference. At the time of
PDOStatement::execute is called, $user variable is changed to "Tom' whereas
PDOStatement::bindParam variable as a value, it remains as 'Andy' from the time
PDOStatement::bindValue is called.

Make sure you understand the difference between these two and choose them according to
your needs. Switching these two methods without a fair amount of consideration is
discouraged.

bindColumn

Different from PDOStatement::bindValue and PDOStatement::bindParam, this method is not
a method for binding variable to prepare statement. In fact, it is quite the opposite: it binds
columns from resulting set to PHP local variables.

This is an interesting method to observe. Previously, we discussed that a method
PDOStatement::fetchObject, can return result set as a defined object. Here, with
PDOStatement::bindColumn, we can bind columns from result set to variables.

$statement = $dbh->prepare('SELECT id, name FROM customers');
$statement->bindColumn('name', $name);

$statement->execute();

while ($statement->fetch(PDO::FETCH_ASSOC)) {

echo $name . PHP_EOL;
}

The first parameter which specifies the table column, accepts both string column name and
0-indexed number as a value. So the following is valid too.

$statement->bindColumn(1, $name);

Conditions:

In the last section, we will discuss some tips when working with PDO.

IN clause

Building 1n clause in a prepare statement is an interesting task. Take a look at following
code and imagine this is what we need to build:

$users = ['Andy', 'Tom'];
$statement = $dbh->prepare('SELECT * FROM customers where name IN :name');

$statement->execute($user);

At first glance, it seems legitimate. Take a closer look. It won't work because prepare
statement only accepts scalar types (e.g. string, int and so on).

The ultimate task becomes building a comma separated string containing equal question
marks(?) to the binding array variable. This is how we can build a legit in clause string.

$users = ['Andy', 'Tom'];
$placeholder = implode(',', array_fill(@, count($users), '?'));
$statement = $dbh->prepare('SELECT * FROM customers where name IN '. $placeholder);

$statement->execute($users);

Wildcard characters
When building a Like clause, we might be tempted to do this:

$name = 'Andy';
$statement = $dbh->prepare('SELECT count(*) FROM customers where name LIKE %:name%');

$statement->bindvalue(':name', $name);

However, that won't work in PDO. We need to shift the wildcard characters to the variable
itself:

$name = '%Andy%';
$statement = $dbh->prepare('SELECT count(*) FROM customers where name LIKE :name');

$statement->bindvalue(':name', $name);

Iteration with SPL (Standard PHP Library)

If you have used a for loop in PHP, the idea of iteration is most likely not foreign to you.
You pass an array to a for loop, and perform some logic inside the loop, but did you know
that you can actually pass data structures other than arrays to a for loop? That's where
Iterator comes into play.

Below is summarised definition of an iterator from Wikipedia:

In computer programming, an iterator is an object that enables a programmer to
traverse a container, particularly lists.[...] Note that an iterator performs traversal and
also gives access to data elements in a container, but does not perform iteration [...]. An
iterator is behaviorally similar to a database cursor.

Some key points to remember here:

e |terator enables us to traverse a container. It is similar to arrays.
e |terator does not perform iteration. In our previous example, for does the iteration.
Other loop types such as foreach and while do iteration.

Now that we know the definition of Iterator, the concept may still be somewhat obscure, but
do not worry, we aren't done yet. We have now established that Iterator works similar to
array and it can be loop through ina for loop.

It is helpful to understand how array actually works in a for loop. Let's take a look at the
code below:

$data = array(1,2,3,4);

for ($i=0; $i<count($data); $i++) {
$key = $i;
$value = $data[$i];

Here is how an array works ina for loop:

e Instep 1, we set $ito 0. (si=e)

¢ In step 2, we check to see $i is less than the length of $data. (si<count(sdata))
¢ In step 3, we increase $i value by 1. (si++)

¢ |n step 4, we can access the key of the current element. (skey = $i)

¢ |n step 5, we can also get the value of current element. ($value = $data[$i])

We can abstract the steps as simple functions as below:

Step 1 = rewind().
Step 2 = valid().
Step 3 = next().
Step 4 = key().

e Step 5 = current().

In abstract level, we can imagine that, as long as an object provides the five functions
above, it can be loop through by a for loop.

In fact, an iterator is nothing but a class implements all five steps mentioned above. In PHP,
The Standard PHP Library(SPL), which is a collection of interfaces and classes that are
meant to solve common problems, provides a standard Iterator interface.

Iterator extends Traversable {
/* Methods */
abstract public mixed current (void)
abstract public scalar key (void)
abstract public void next (void)
abstract public void rewind (void)
abstract public boolean valid (void)

Your first iterator class

Now that we understand what an iterator is, it's time to build our first one.

Ouir first iterator represents top 10 stared PHP repositories from Github. We can pass it into
a foreach and loop through it just like an array. We will name it
TrendingRepositoriesiterator.

First, we need to make our class implement the Iterator interface.

class TrendingRepositoriesIterator implements Iterator

{

public function rewind()

{

}

public function valid()

{

}

public function next()

{
b

public function key()
{

}

public function current()

{
3

An iterator must always implement the five methods described above. Final code of
TrendingRepositorieslterator is as follow:

<?php

class TrendingRepositoriesIterator implements Iterator

{

private $repos = [];

private $pointer = 0;

public function __construct()

{

$this->populate();
}
public function rewind()
{

$this->pointer = 0;
}
public function valid()
{

return isset($this->repos[$this->pointer]);
}

public function next()

{

$this->pointer++;

public function key()
{

return $this->pointer;

public function current()

{

return $this->repos[$this->pointer];

private function populate()

{
$client = new GuzzleHttp\Client();
$res = $client->request('GET', 'https://api.github.com/search/repositories', [
'query' => ['q' => 'language:php', 'sort' => 'stars', 'order' => 'desc']
1);
$resInArray = json_decode($res->getBody(), true);
$trendingRepos = array_slice($resInArray['items'], 0, 10);
foreach ($trendingRepos as $rep) {
$this->repos[] = $rep['name'];
3
}

e public function populate(): We will not go in-depth regarding this function as that will

defeat the purpose of this chapter. Basically this function fetches top 10 stared PHP
repositories from Github via Github public API and store them into $repos property.

e private $repos: We use this property to store fetched repositories.

e private $pointer: We can use array's internal pointer to do the job, however since we
are building our own iterator, we want to retain full control.

¢ public function __construct(): The property fetches target repositories when an object
is instantiated.

¢ public function rewind(): We can use this to set pointer to first position.

¢ public function valid(): As long as the value of current pointer is set, it is valid.

¢ public function next(): This is used to increase the pointer by 1 position.

e public function current(): We can return value of current pointer through this function.

Let's see the use case of TrendingRepositorieslterator, which can used just like an array:

$trendingRepositoriesIterator = new TrendingRepositoriesIterator();

foreach ($trendingRepositoriesIterator as $repository) {
echo $repository . "\n";

3

// Output
laravel
symfony
CodeIgniter
DesignPatternsPHP
Faker

yii2
composer
WordPress
sage
cakephp

Awesome! Now we have written our first iterator and as you can see, it is actually very easy
and straightforward.

Why iterator?

You might still wonder why we need to use iterator. Can't we just use array? The answer is
yes and no. In most cases, array is sufficient for the job, although iterator does come with
some key advantages, which we will share next. Keep in mind, we are by no means
suggesting using iterator in all circumstance.

Encapsulation

In our first iterator, TrendingRepositorieslterator, the details of traversing Github
repositories is completed hidden from outside. We can update how we get the data, where
we get the data from, and how we want to traverse the resources. No change is needed
from the client code. This, known as Encapsulation, is one of the key concepts of Object-
Oriented Programming.

Additional examples include:

To iterate through MySQl results, we can use:

$result = mysql_query("SELECT * FROM books");

// Iterate over the structure
while ($row = mysql_fetch_array($result)) {
// do stuff

}

To iterator through content of a text file, we can:

$fh = fopen("books.txt", "r");

// Iterate over the structure
while (!'feof($fh)) {

$line = fgets($fh);
// do stuff with the line here

With iterator, we can encapsulate the process of traversing the recourse so that the outside
world is not aware of the internal operations. In fact, the outside world does not need to
know where we get the data from or how it is traversed in a loop. All they need to know is
that, they can iterate through it as simply as:

$bookIterator = new BookIterator();
foreach($bookIterator as $book) {
// do stuff with $book

}

Encapsulation is a very powerful concept and it enables us to write clean code.

Efficient memory usage

Efficient memory usage is a key benefit of iterator.

In our TrendingRepositorieslterator class, we can actually fetch resource dynamically,
meaning we will only fetch data from Github APl when the next() method is called. This
technique is called Lazy Loading. It helps us save a very significant amount of memory as
value is only generated when it is needed.

Easy to add additional functionalities

Another benefit of using iterator is that we can decorate it to add additional functionalities.
Take our TrendingRepositorieslterator class for example. We want to exclude "laravel"
from the resource. One obvious method is to update our original class, although that is of
course not what we would do here.

We can decorate the original iterator using SPL's CallbackFilterlterator and no change is
needed for TrendingRepositorieslterator at all.

$trendingRepositoriesIterator = new TrendingRepositoriesIterator();

$newTrendingRepositoriesIterator = new CallbackFilterIterator($trendingRepositoriesIterat
return $value != 'laravel';

¥

foreach ($newTrendingRepositoriesIterator as $repository) {
echo $repository . "\n";

// Output

symfony
CodeIgniter
DesignPatternsPHP
Faker

yii2

composer
WordPress

sage

cakephp

| S— >

The cool part of this is that there is no duplication of objects. The callback fires only when
TrendingRepositorieslterator hits the next() method, and then the logic it will be applied
accordingly. This is a great way to save memory as well as boost performance.

SPL Iterators

Now that we understand the power and benefits of using iterators, it is good practice to use
iterators to solve suitable problems. However if we were to write iterators by ourselves
whenever we encounter a new problem, it would be very time consuming since it does
require us to implement a set of pre-defined functions.

Luckily PHP has done a good job of providing a set of iterators for solving some common
problems. In the following sections, we will work through a set of common iterators provided
by SPL. As a refresher, SPL standards for Standard PHP Library was built to provide a
collection of interfaces and classes that are meant to solve common problems.

ArrayObject vs SPL Arraylterator

In PHP, array is one of the eight primitive types. PHP provides 79 functions for handling
array related tasks (reference). It is completely suitable to use array, however there are
times, depending on how much you embrace Object-Oriented programming, that you may
want to use array as an object. In this case, PHP provides two classes to make array a first
class citizen in Object-Oriented code.

ArrayObject

The first option we have is ArrayObject. This class allows objects to work as arrays.

Let's take a look at its class signature:

ArrayObject implements IteratorAggregate , ArrayAccess , Serializable , Countable{

public ArrayIterator getIterator (void)

As we have seen above, ArrayObject implements IteratorAggregate. What is
IteratorAggregate? It is an interface to create an external iterator. In simple terms, it is a
quick way to create an iterator, instead of implementing lterator interfaces with five methods:
rewind,valid,current,key and valu, IteratorAggregate allows you to delegate that task to
another iterator. All you need to do is implement a single method getlterator().

IteratorAggregate extends Traversable {
abstract public Traversable getIterator (void)

}

ArrayObject implements IteratorAggregate. It creates an external Arraylterator for iterator
feature.

As ArrayObject implements lteratorAggregate, we can use itin a foreach loop just as an
array.

http://php.net/manual/en/ref.array.php

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

);
$booksAsArrayObject = new ArrayObject($books);

foreach ($booksAsArrayObject as $book) {
echo $book . "\n";

// Output

Head First Design Patterns

Clean Code: A Handbook of Agile Software Craftsmanship
Domain-Driven Design: Tackling Complexity in the Heart of Software
Agile Software Development, Principles, Patterns, and Practices

The primary reason we want to use ArrayObiject is to use array in Object-Oriented fashion.

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

);
$booksAsArrayObject->append('The Pragmatic Programmer: From Journeyman to Master');

// --- Vs ---
$books[] = 'The Pragmatic Programmer: From Journeyman to Master';

Arraylterator

Arraylterator works similar to ArrayObject.

Let's take look at its class signature as well:

ArrayIterator implements ArrayAccess , SeekableIterator , Countable , Serializable {

It is almost identical to ArrayObject in terms of interfaces they implement. The only
difference is, instead of Arraylterator interface ArrayObject implements, it implements
Seekablelterator.

We use Arraylterator the same way as we use ArrayObjectin a foreach loop:

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

);
$booksAsArrayIterator = new ArrayIterator($books);

foreach ($booksAsArrayIterator as $book) {
echo $book . "\n";

// Output

Head First Design Patterns

Clean Code: A Handbook of Agile Software Craftsmanship
Domain-Driven Design: Tackling Complexity in the Heart of Software
Agile Software Development, Principles, Patterns, and Practices

Use array in Object-Oriented fashion:

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

);
$booksAsArrayIterator = new Arraylterator($books);

$booksAsArrayIterator->append('The Pragmatic Programmer: From Journeyman to Master');
// --- Vs ---
$books[] = 'The Pragmatic Programmer: From Journeyman to Master';

Comparison

You may be wondering when to use ArrayObject and when to use Arraylterator. It is
important to know the difference and the relationship between ArrayObject and Arraylterator.

As we have already discovered in the ArrayObject section, ArrayObiject actually creates
Arraylterator as an external iterator. It is fair to say Arraylterator does what ArrayObject
does, and it provides more functionality, specifically seeking to a position. This is
accomplished by implementing Seekablelterator.

Besides moving a pointer from top to bottom as iterator, it allows you to randomly jump to a
position.

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

)i

$booksAsArrayIterator = new ArrayIterator($books);
$booksAsArrayIterator->seek(3);

echo $booksAsArrayIterator->current();

// Output

Agile Software Development, Principles, Patterns, and Practices

At last, Arraylterator is part of SPL whereas ArrayObject is not.

Iterating the File System

It is a very common task to list outthe content of a given directory. PHP provides lots of
functions for handling a file system. One of them is scandir() .

Suppose we are given a task to list out all files in a given directory as below:

---books
| ---book_item_1.txt
| ---book_item_2.txt
| ---book_item_3.txt
| ---book_item_4.txt

We can accomplish it through scandir() as shown below:

$books = scandir("books");
foreach($books as $book) {
echo $book . "\n";

// Output

book_item_1.txt
book_item_2.txt
book_item_3.txt
book_item_4.txt

These are two virtual directories("." and "..") you'll find in each directory of the file system.

As this chapter is about iterators, we are going to introduce some iterators for handling
filesystem. Hopefully in your next project, you will be able to utilize some of them. Three
iterators come in handy: Directorylterator, Filesystemlterator and RecursiveDirectorylterator.

Before we look into each one of them, it is useful to take a look at their inherit relationship:

DirectoryIterator extends SplFileInfo
FilesystemIterator extends DirectorylIterator
RecursiveDirectoryIterator extends FilesystemIterator

Directorylterator

The Directorylterator class provides a simple interface for viewing the contents of filesystem
directories.

To accomplish the same task, we can use Directorylterator:

$books = new DirectoryIterator('books');

foreach($books as $book) {
echo $book->getFilename() . "\n";

// Output

book_item_1.txt
book_item_2.txt
book_item_3.txt
book_item_4.txt

The only parameter needed to create a Directorylterator object is a directory's path.
Compared to scandir function, instead of the file name as a string, Directorylterator returns
an object. The object holds various information relating to a file, which we can make use.

Filesystemliterator

To accomplish the same task by using Filesystemlterator, we can use:

$books = new FilesystemIterator('books');

foreach($books as $book) {
echo $book->getFilename() . "\n";

// Output

book_item_1.txt
book_item_2.txt
book_item_3.txt
book_item_4.txt

This looks almost the same as Directorylterator, except that Filesystemliterator has
automatically filtered out the two virtual directories.

Are they really the same? We can use a simple method to tell the differences:

$books = new DirectoryIterator('books');
foreach($books as $key=>$value) {

echo $key . ' is a type of '. gettype($key) . "\n";

echo $value . ' is a type of '. get_class($value) . "\n";
}
echo "-------------oeo - ."\n";

$books = new FilesystemIterator('books');
foreach($books as $key=>$value) {
echo $key . ' is a type of '. gettype($key) . "\n";
echo $value . ' is a type of '. get_class($value) . "\n";

The result of running above script from CLI is:

0 is a type of integer
. is a type of DirectoryIterator
1 is a type of integer
. 1s a type of DirectoryIterator
2 is a type of integer
book_item 1.txt is a type of DirectoryIterator
3 is a type of integer
book_item_2.txt is a type of DirectoryIterator
4 is a type of integer
book_item_3.txt is a type of DirectoryIterator
5 is a type of integer
book_item_4.txt is a type of DirectoryIterator

books/book_item_1.txt is a type of string

books/book_item_1.txt is a type of SplFileInfo
books/book_item_2.txt is a type of string
books/book_item_2.txt is a type of SplFileInfo
books/book_item_3.txt is a type of string
books/book_item_3.txt is a type of SplFileInfo
books/book_item_4.txt is a type of string

type of SplFilelInfo

L O 9 O D D D D

books/book_item_4.txt is

Now we can see they are actually quite different internally:

e Directorylterator returns an integer as the key and a Directorylterator as the value in a
loop.

¢ Filesystemlterator returns a string of full path as the key and a SplFilelnfo object as the
value in a loop.

In fact, Filesystemlterator comes with a bit more flexibility. When creating a

Filesystemliterator object, it accepts a directory's path as the first parameter similar to

Directorylterator. Moreover, you can optionally pass a second parameter as a flag. This flag

is able to configure various aspects of this function.

Filesystemliterator:: CURRENT_AS_PATHNAME: This flag will make Filesystemlterator
return file path instead of SplFilelnfo object as the value.
Filesystemliterator::CURRENT_AS_FILEINFO: This flag will make Filesystemlterator
return SplFilelnfo object as the value. This is the default behavior. You don't have to set
it explicitly.

Filesystemliterator:: CURRENT_AS_SELF: This flag will make Filesystemlterator return
Filesystemlterator itself as the value.

Filesystemliterator::KEY_AS_PATHNAME: This flag will make Filesystemlterator return
file path as the key. This is the default behavior. You don't have to set it explicitly.
Filesystemliterator::KEY_AS_FILENAME: This flag will make Filesystemliterator return
file name and extension instead of file path as the key.
Filesystemliterator::FOLLOW_SYMLINKS: This flag will make
RecursiveDirectorylterator::hasChildren() follow symlinks.
Filesystemliterator::NEW_CURRENT_AND_KEY: This flag helps set two other
flags(Filesystemlterator:KEY_AS_FILENAME and

Filesystemliterator:: CURRENT_AS_FILEINFO) at once.
Filesystemiterator::SKIP_DOTS: This flag will make Filesystemlterator ignore virtual
directories ("." and "..").

Filesystemliterator::UNIX_PATHS: This flag will make Filesystemlterator use Unix style
directory separator() despite what system the PHP script runs on.

Peeking ahead with Cachinglterator

In this section, we will introduce an iterator with the ability of peeking into next element in an
iteration. This feature enables us to do a lot useful things such as, executing something
different when iterator reaches the end of the list.

The class with this great power is Cachinglterator.

Let's first take a look at it class signature, then, we will go into details of its usage.

CachingIterator extends IteratorIterator

Cachinglterator inherits from Iteratorlterator. What is Iteratorlterator? It is simply a wrapper
around another iterator, under the hood. It will forward the five Itertator methods(rewind() ,
current() , key() , valid() , next()) calls to the iterator it wraps around. We can also

retrieve the inner iterator by calling method getiInneriterator() .

Due to the nature of this class, the inner iterator's pointer always moves one step ahead of
Cachinglterator, and Cachinglterator provides a method hasnext() to tell us if it reaches the
end of the list. That is how Cachinglterator peeks ahead.

Now, let's put it into action.

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

)i
$booksAsCachingIterator = new CachingIterator(new ArrayIterator($books));

foreach ($booksAsCachingIterator as $book) {

echo 'current book - ' . $book . PHP_EOL;
if ($booksAsCachingIterator->hasNext()) {
echo 'next book - ' . $booksAsCachingIterator->getInnerIterator()->current() . PH
echo '---------iieie s ' . PHP_EOL;
}
}
J E— o]

Result of running above script in a CLI:

current book - Head First Design Patterns
next book - Clean Code: A Handbook of Agile Software Craftsmanship

current book - Clean Code: A Handbook of Agile Software Craftsmanship
next book - Domain-Driven Design: Tackling Complexity in the Heart of Software

current book - Domain-Driven Design: Tackling Complexity in the Heart of Software
next book - Agile Software Development, Principles, Patterns, and Practices

current book - Agile Software Development, Principles, Patterns, and Practices

Similar to other iterators, to create an Cachinglterator instance, we pass in an iterator as the
first parameter to the class contractor. As we can see, the real magic behind peeking ahead
is provided by method hasnext() . This method is able to tell us if there is an immediate
next element.

Beside the first parameter, Cachinglterator also optionally accepts a second parameter as a
flag.

e Cachinglterator::CALL_TOSTRING: It will return __toString of the current element as
value. This is the default behavior.

e Cachinglterator::CATCH_GET_CHILD: It will capture all exceptions thrown when
accessing children.

e Cachinglterator::TOSTRING_USE_KEY: It will return the key value when casting the
iterator to a string in a loop.

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

);
$booksAsCachingIterator = new CachingIterator(new ArrayIterator($books), CachingIterator:
foreach ($booksAsCachingIterator as $key=>$book) {
echo $booksAsCachingIterator . PHP_EOL;
// Output
0
1
2
3

| S— >

e Cachinglterator::TOSTRING_USE_CURRENT: It will return the current value when
casting the iterator to a string in a loop.

$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

)
$booksAsCachingIterator = new CachingIterator(new ArrayIterator($books), CachingIterator:

foreach ($booksAsCachingIterator as $key=>$book) {
echo $booksAsCachingIterator . PHP_EOL;

// Output

Head First Design Patterns

Clean Code: A Handbook of Agile Software Craftsmanship
Domain-Driven Design: Tackling Complexity in the Heart of Software
Agile Software Development, Principles, Patterns, and Practices

j S— s

e Cachinglterator::TOSTRING_USE_INNER: It will return the inner iterator casted to a
string when casting the iterator to a string in a loop. If we set this flag in the same code
as previous example, it will throw an exception. This is because Arraylterator does not
implement the _ tostring() method.

e Cachinglterator::FULL_CACHE: A Cachinglterator won't have a key word "caching" in
its name if it is not able to do some sort of cache. When this flag is set, it will cache the
results, should they ever be iterated for future use.

Generator

You are now convinced by the benefits of iterators. They encapsulate the details of
traversing and they are much more efficient than creating in-memory arrays. However,
everything has its price. To create an iterator, we still have to implement the SPL Iterator
interface. You might be terrified of iterators and not want to implement those five methods
contracted by lterator interface. It is time consuming and sometimes even complex to
implement them.

Starting from PHP 5.5, you won't be intimidated any more. PHP introduces something,
Generators, which provide an easy way to implement simple iterators without the overhead
or complexity of implementing a class that implements the Iterator interface.

What is exactly a generator? A generator is like a normal PHP function, except that it has a
special keyword , "yield", in it.

Below is a simple example of a generator function. We won't have such a generator in the
real world application - it is here for demonstration only:

function booksGenerator ()
{
$books = array(
'Head First Design Patterns',
'Clean Code: A Handbook of Agile Software Craftsmanship',
'Domain-Driven Design: Tackling Complexity in the Heart of Software',
'Agile Software Development, Principles, Patterns, and Practices',

)5

foreach ($books as $book) {
yield $book;

foreach (booksGenerator() as $book) {
echo $book . PHP_EOL;

// Output

Head First Design Patterns

Clean Code: A Handbook of Agile Software Craftsmanship
Domain-Driven Design: Tackling Complexity in the Heart of Software
Agile Software Development, Principles, Patterns, and Practices

Internally PHP realizes a generator function when it spots the yield keyword. When a
generator function is called for the first time, PHP creates a Generator object. This
Generator object is an instance of an internal class Generator and Generator class
implements the Iterator interface. This way, users are able to create iterators without writing
the contracted code, all thanks to PHP generator.

The vyield is called when we need to provide the step values. Think of it as return ina
function or current method in a regular iterator.

Let's turn one of our first iterator class TrendingRepositorieslterator to a generator function:

function trendingRepositoriesGenerator()

{
$client = new GuzzleHttp\Client();
$res = $client->request('GET', 'https://api.github.com/search/repositories’', [
'query' => ['q' => 'language:php', 'sort' => 'stars', 'order' => 'desc']
1);
$resInArray = json_decode($res->getBody(), true);
$trendingRepos = array_slice($resInArray['items'], 0, 10);
foreach ($trendingRepos as $rep) {
yield $rep['name'];
}
}

It turns out to be much less code with a generator. We can also use it in a foreach loop, in
the same way as we did with TrendingRepositorieslterator:

foreach (trendingRepositoriesGenerator() as $repo) {

echo $repo . PHP_EOL;

Note that generators themselves do not provide anything special - they just make creating
iterators simpler. In other words, they are definitely not replacements for iterators.

Exception handling

Since PHP 5 was released, Exception is added to PHP as an object-oriented programming
language feature. By definition, an Exception is an exceptional event during program
execution. In PHP, an Exception is simply an object (an instance of Exception class). When
an exception occurs, PHP will halt current execution flow and look for an handler, and then it
will continue its execution by the handler's code. If no handler is found, a PHP Fatal Error
will be issued with an "Uncaught Exception ..." message and the program terminates.

When to use Exception

Exception is good for handling exceptional cases of your program, however it is not the
solution for all error cases. Sometimes it is perfectly fine to return a boolean FALSE.
Sometimes you are much better off throwing exceptions instead of returning weird error
codes. Therefore it is very important to understand when to use Exception and when not to.

By now, we all know an exception should be thrown when an exceptional situations occurs.
But if exceptional situation seems rather arbitrary, what qualifies as an "exceptional"
situation?

Here is a good rule of thumb: since exceptional situations don't happen frequently, if you
supply correct values to your function and remove the thrown exception, if the function then
fails, the exception is used incorrectly.

Let's take a look at some concrete examples:

e If you create a function to save a user's input to database, when a database connection
fails, an exception should be thrown.

e For the same function, you create a validator for checking a user's input. When an
invalid value is supplied, you should not throw an exception. Invalid value is a rather
frequent case for a validator class.

A good use case of Exception

Here we have an example of returning error codes to indicate error cases:

class User

{
public function login()
{
if ($this->invalidUsernameOrPassword()) {
return -2;
}
if ($this->tooManyLoginAttempts()) {
return -1;
}
return 1;
}
public function redirectToUserPage()
{
}
}

Client code might be something similar to the below:

$user = new User();
$result = $user->login();

if (-2 == $result) {
log('invalid username or password');
} else if (-1 == $result) {
log('too many login attempts');
} else if (1 == $result) {
$user->redirectToUserPage();

Here we can spot a couple of problems with error codes:

e Error codes do not contain error related information by themselves, which make them
very hard to maintain.

e Error codes result in number of if/else statements in client's code, depending on how
many there are. (Conditional statements should be eliminated as much as possible, in
order to make our code clean).

Let's refactor the code to use exceptions:

class User

{
public function login()
{
if ($this->invalidUsernameOrPassword()) {
throw new InvalidCredentialException('Invalid username or password');
by
if ($this->tooManyLoginAttempts()) {
throw new LoginAttemptsException('Too many login attempts');
3
}
public function redirectToUserPage()
{
}
}

And client code can be refactored as:

try {

$user = new User();
$user->login();
$user->redirectToUserPage();

} catch (InvalidCredentialException $e) {
log($e->getMessage());

} catch (LoginAttemptsException $e) {
log($e->getMessage());

As we can see, by using exceptions, the second code sample conveys messages about the
errors much more clearly. Beyond that, in the client code, by eliminating conditional
statements, the code become self-explanatory.

A case of misusing Exception

One common way of misusing exceptions is using them to control the flow of application
logic. It is not only confusing, but also slows down your code. To emphasize again, exception
is used to raise exceptional situations.

Below is one example of of misusing exceptions, which is discouraged.

function register($email, $role) {

try {
if ($role == 'member') {
throw new CreateMemberException();
} else if ($role == 'admin') {
throw new CreateAdminException();
}

} catch (CreateMemberException $e) {
// code for creating member account
} catch (CreateAdminException $e) {

// code for creating admin account

The function register() uses exceptions to delegate account creation tasks. This is
obviously against rules of exceptions. Though PHP does not stop you, you should religiously
forbid yourself from doing this.

How to use Exception

Four key words are associated with Exception. They are: throw , try , catch and
finally . An exception object is thrown(throw) in @ method when an exceptional event

happens. Clients that call the method will normally place the method ina try block and
catch it with some handling code. A finally block ensures the code inside the block will

always be executed.

Throw

All exceptions in PHP are a class or subclass of Exception. It takes three optional

parameters in its constructor.

public _ construct ([string $message = "" [, int $code = 0@ [, Exception $previous = NULL

{ E— >

e $message: The exception message. This message provides some human readable
information. And normally supply this parameter when instantiating an exception.

e $code: It is useful for identifying types of exceptions that belong to the same class.

e $previous: The exception before current one. This is normally used when we want to re-

throw an exception in a catch block.

Below is an example of PHP syntax to throw an exception

throw new Exception('some error message');

The keyword here is throw . Note that we first need to initiate an exception object.

Catch

When we need to catch exceptions, we place the callee in a try-catch block as below:

<?php
try {
methodThatThrowsExceptions();
} catch (Exception $e) {
// handle exception gracefully
}

72>

The catch block is where we place our handler code. Detailed exception handling
implementation varies depending on application design. For example, we could try to
recover the exception as much as we can, and if that is not possible, we could redirect users
to a customer support page. If we leave it unhanded, PHP will eventually terminate the
program and leave users with a page of meaningless error message, which is discouraged.

Exception bubble effect

If you are using some kind of frameworks, exceptions are likely handled even if you never
actually create any handler for them. That is because exceptions bubble up, and your
framework will eventually handle them. A simple example of exception bubble effect is:

function methodA()

{
throw new Exception('error from methodA');
}
function methodB()
{
methodA();
}
function methodC()
{
try {
methodB();
} catch (Exception $e) {
// handle error gracefully
}
}

In the sample code, when methodC is called, it calls methodB, which directly invokes
methodA. An exception is thrown in methodA, since methodB does not handle it. It then
bubbles up to methodC, which gracefully handles the exception. In this example, though
methodC does not call methodA directly, because exception bubbles up the stack, it is still
handled gracefully at the end.

Multiple catch blocks

A method might contain different exceptions: some might be directly thrown by themselves
and some might be bubbled up from their underlying stack. The catch block is designed to
handle multiple exceptions, so we can have multiple catch blocks for handling different
exceptions. A caveat here is that the position matters.

In multiple catch blocks, PHP picks the first block that matches the thrown exception's type.
A good rule for positioning catch blocks is from a more specific one to a less specific one.

Let's see it in an example.

class ExceptionA extends Exception{}
class ExceptionB extends ExceptionA{}
try {

methodThatThrowsExceptionA();
} catch (ExceptionA $e) {
} catch (ExceptionB $e) {
} catch (Exception $e) {

3

In the sample code, it is obvious ExceptionA catch block will get picked. Now let's change
the method to throw ExceptionB.

class ExceptionA extends Exception{}
class ExceptionB extends ExceptionA{}
try {

methodThatThrowsExceptionB();
} catch (ExceptionA $e) {
} catch (ExceptionB $e) {
} catch (Exception $e) {

}

Which catch block do you think it will be picked? The answer is still ExceptionA. Because
ExceptionA is a parent class of ExceptionB, when ExceptionB is thrown, ExceptionA catch
block comes first and matches the thrown exception's type, giving ExceptionB is an instance
of ExceptionA.

This can be fixed by positioning them from the the more specific type to a less specific type,
as shown below:

class ExceptionA extends Exception{}

class ExceptionB extends ExceptionA{}

try {

methodThatThrowsExceptionB();
} catch (ExceptionB $e) {
} catch (ExceptionA $e) {

} catch (Exception $e) {

trace message

Since exceptions can be thrown anywhere in your program, it is very important to find the
root cause. Exception provides various APIs to make it easy to trace where the exception
comes from.

Seven public methods are extracted from PHP manual file:

final public string getMessage (void)

final public Exception getPrevious (void)
final public mixed getCode (void)

final public string getFile (void)

final public int getLine (void)

final public array getTrace (void)

final public string getTraceAsString (void)

And we can use them to trace details of the thrown exception:

e Exception::getMessage — Gets the Exception message

e Exception::getPrevious — Returns previous Exception

e Exception::getCode — Gets the Exception code

e Exception::getFile — Gets the file in which the exception occurred
e Exception::getLine — Gets the line in which the exception occurred
e Exception::getTrace — Gets the stack trace

e Exception::getTraceAsString — Gets the stack trace as a string

Let's put it in action.

For demonstration purpose, let's pretend we have a createAaccount() method, which throws
an Exception when an email address is invalid.

function createAccount($email)

{
if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {
throw new Exception('In valid email address');
}
return sprintf('account creation email is sent to %s', $email);
}

What information can we get if we trigger the exception?

function linSeparator()

{

return PHP_EOL. '----------mmmmmm oo ' .PHP_EOL;
}
try {

createAccount('test');
} catch (Exception $e) {

echo $e->getMessage();
echo linSeparator();

echo $e->getPrevious();
echo linSeparator();

echo $e->getCode();
echo linSeparator();

echo $e->getFile();
echo linSeparator();

print_r($e->getTrace());
echo linSeparator();

echo $e->getTraceAsString();

Running the script from CLI, we get the following:

In valid email address

[0] => Array

(
[file] => /Users/xu/Desktop/Exception/trace.php

[1line] => 19
[function] => createAccount
[args] => Array

(
[6] => test

#0 /Users/xu/Desktop/Exception/trace.php(19): createAccount('test')

Beside obvious trace information, we can also tell that, the default code is 0 and previous
exception is null when instantiating an exception object.

public _ construct ([string $message = "" [, int $code = 0@ [, Exception $previous = NULL

J R 2]

One more point we want to address here is that an exception is created when it is
instantiated, not when it is thrown. So Exception APIs will give you information related to the
time an exception is instantiated.

For example, in the method below, Exception::getLine will return 2.

function methodThrowException()

{
$exception = new Exception('error from methodThrowException'); // line 2
throw $exception; // line 3
}
finally

Before PHP 5.5, there was not finally block in PHP. A problem surfaced. If we wanted to
ensure that one piece of code always ran regardless of which catch block got picked, we
had to put that piece of code into each one of catch blocks.

To solve this problem, finally block was introduced since PHP 5.5. Code inside finally
block will always be executed after catch block. We can even use try / finally only
without catch

This block is a place for us to do some clean up jobs. Tasks such as rolling back database
transactions, closing database connections, releasing file locks and so on. Its usage is pretty
straightforward.

For example, to use it alongside try / catch blocks:

try {

createAccount('test');
} catch (Exception $e) {

echo $e->getMessage();
} finally {

echo 'Close Database Connection';

Use try / finally block only:

try {

createAccount('test');
} finally {

echo 'Close Database Connection';

Modern PHP Developer

How to use Exception

77

Create your first custom exception

Throwing custom exception allows client code to handle the error case in a recognized
manner. For example, when a database exception is thrown, it is reasonable to shut down
the process completed. However, in the case of an invalid user input, we might just want to
log an error message.

By creating custom exceptions, we express error cases of our code proactively. This not only
helps the clients to avoid pitfalls, but also gives them enough information to handle the error
cases confidently.

As all exceptions in PHP 5.x use Exception as the base, we are actually extending
Exception to create our custom exception. In this example, let's revisit our previous code.

class User

{
public function login()
{
if ($this->invalidUsernameOrPassword()) {
throw new InvalidCredentialException('Invalid username or password');
}
if ($this->tooManyLoginAttempts()) {
throw new LoginAttemptsException('Too many login attempts');
}
}
public function redirectToUserPage()
{
}
}

We have two custom exceptions here (InvalidCredentialException and
LoginAttemptsException). They should actually be under one type. And they will be assign
different messages.

Since InvalidCredentialException and LoginAttemptsException are error cases for an
invalid login runtime error, it is reasonable to create an exception called
InvalidLoginException, and use it for the two error cases above.

It is simple enough to create a custom exception with only one line of code.

class InvalidLoginException extends Exception {}

We can refactor previous code to use the newly created exception class:

class User

{
public function login()
{
if ($this->invalidUsernameOrPassword()) {
throw new InvalidLoginException('Invalid username or password');
}
if ($this->tooManyLoginAttempts()) {
throw new InvalidLoginException('Too many login attempts');
¥
}
public function redirectToUserPage()
{
}
}
A little trick

A potential issue might appear shortly, if we are using InvalidLoginException with too many
different messages. The issue is easy to illustrate.

Imagine somewhere in our code, we need to throw another InvalidLoginException when
an user account is blocked. We will throw the exact InvalidLoginException, but with
different messages. The same thing happens again, and we will repeat the same actions.
The list adds up. Now imagine doing this for different types of exceptions. We would lose
track as the developer.

So here is a little trick: we shift the exception creation task to InvalidLoginException class.

class InvalidlLoginException extends Exception

{
public static function invalidUsernameOrPassword() {
return new static('Invalid username or password');
}
public static function tooManyLoginAttempts() {
return new static('Too many login attempts');
}
}

Now the client code becomes:

class User

{
public function login()
{
if ($this->invalidUsernameOrPassword()) {
throw InvalidLoginException::invalidUsernameOrPassword();
}
if ($this->tooManyLoginAttempts()) {
throw InvalidLoginException::tooManyLoginAttempts();
}
}
public function redirectToUserPage()
{
}
}

When the instantiation of exception is shifted to a function block, we gain much more space
and freedom to do more interesting stuff, compared to a single line within the if block
previously.

By keeping all of them in a centralized location, which is the exception class itself, not only
does it create a more maintainable code base, but also give clients an opportunity to take a
quick glance what exact exception they would expect.

SPL exceptions

Creating your own custom exception is great, but it does take some mental energy to come
out as a meaningful name. Naming is hard, arguably one of the hardest thing in
programming.

The Standard PHP Library (SPL) provides a set of standard Exceptions. We should use
them for our own benefit. They cover a list of common error cases, which can save us
energy if we were to come out on our own. Additionally, we can also expand from these
standard Exceptions to make them more specific to our own domain.

In this sections, we will go through 14 SPL Exceptions, explaining them in simplest terms, so
that you can use them next time in your own project.

-LogicException (extends Exception)
--BadFunctionCallException
- -BadMethodCallException
--DomainException
--InvalidArgumentException
--LengthException
--0OutOfRangeException
-RuntimeException (extends Exception)
--OutOofBoundsException
--OverflowException
- -RangeException
--UnderflowException
- -UnexpectedValueException

There are two main categories of SPL Exceptions. They are LogicException and
RuntimeException, Under each one of them, there are a few sub exception classes
describing more specific error cases.

Logic Errors

LogicExcetpion

It's not hard to tell from its name that, LogicException covers error cases related to logics.
As it is a parent class for a few more specific exceptions, it is a bit generic. When your code
is returning or receiving something that is not logic, there is a logic error. When an error case
is determined to be a logic error, use LogicException if you cannot find a better fit from its
subclasses.

BadFunctionCallException

When an non-existing function get called, or wrong parameters are supplied to a function,
this exception gets thrown. As this exception covers function scope, not method in a class, it
is mostly thrown by PHP.

BadMethodCallException

When an non-existing method of a class gets called, or wrong parameters are supplied to
that method, an BadFunctionCallException can be thrown. While this exception is similar
to to BadFunctionCallException, it is designed for class scope.

DomainException

Domain here refers to the business our code works for. When a parameter is valid by its
datatype, but invalid to the domain, a DomainException can be thrown.

For example, in an universal image manipulation function, transformImage($imageType) ,
DomainException should be thrown when $imageType contains an invalid image type. To
this domain, an invalid image type is a domain error.

InvalidArgumentException

This one is simple, as its name says: it should be thrown when an invalid argument is
supplied.

PHP5 introduces type hinting, however it does not yet work for scalar types such as int,
string yet. To make it work, we throw InvalidArgumentException when a scalar type does
not meet the requirement.

LengthException

We can use this exception when length of something is invalid. For example, password
needs to be at least 8 characters.

OutOfRangeException

Use this exception when an invalid index is accessed. The keyword here is range.

RuntimeException

RuntimeException is a name derived from compile language, such as Java. In Java, there
are two main categories of exception: checked exceptions and runtime exceptions. A
complier won't compile the code until all checked exception are handled (in a catch block).
Runtime exception can only be detected at run time and is not required to place these
exceptions ina catch block.

Since PHP is not a compile language, we can think of its "compile time" as the time we write
the code, and its "run time" as the code execution time. "Compile time" exceptions can be
detected in development time, for example invalid datatype parameter.

To avoid confusion, keep in mind that logic exceptions discussed above are for "compile
time".

RuntimeException's subclasses cover more specific scenarios. Use this exception if you
cannot find a better fit from its subclasses.

OutOfBoundsException

This exception is used when an invalid index is called. Not to be confused with
OutOfRangeException, OutOfBoundsException is a run time exception.

For example, when a user creates an array data structure and when an invalid index is
called, an OutOfBoundsException should be thrown. Whereas trying to obtain the day of
week using 8 should throw an OutOfRangeException.

$booksList = array();
$bookList[5]; // 0OutOfBoundsException

$dayofWeek = $calendar->day(8); // OutOfRangeException

OverflowException

When a container with limited capacity is asked to fill more than it can hold, this exception
can be thrown.

RangeException

This exception is for generic error cases related to range at "run time".

UnderflowException

Opposite of OverflowException is UnderflowException. When an empty container is asked to
remove an element, this exception can be thrown.

UnexpectedValueException

As simple as its name says, when an unexpected value is raised or accessed, we throw this

exception.

That is all the exceptions provided by PHP SPL. We should always throw the most accurate
exception for an error case. Inevitably, one exception may fit under multiple exceptions in
which case, it is fine to pick one.

An meaningful exception message goes a long way towards a maintainable project.

Test Driven Development

If you have not heard of Test Driven Development(TDD), you should begin to familiarise
yourself with it. Though PHP community is a bit late on TDD practice compared to other
languages such as Ruby, once the benefits TDD were realized, it has become almost
essential for a modern PHP developer.

TDD is a software development technique. The basic idea behind TDD is that, we create
tests before we actually code any thing. Writing test against no code is more of a mindset
shift than anything else. It is opposite of traditional coding habit, where we create code first,
then manually run the unit to make sure it does what we intended manually. The benefits
that TDD brings to us are enormous. At first it forces us to think about code design before
we create any concrete code, then it allows us to refactor our code base without worrying
about the side effect. It makes our code easy to maintain in the long run.

TDD consists of three phases: which are Red, Green and Refactor.

Red phase

In red phase, as the developer, we will plan out what the code will look like without actually
writing it. This is to say, we will design our class or class methods, without implementing its
details. Initially this phase is hard, it requires us to change our traditional habit of coding. But
once we get used to this process, we will naturally adapt to it and realize that it helps us
design better code. It is about changing our mindset, as we should focus on the input and
output of the API, instead of the details of the code. The result of this phase is successful
creation of red test.

Green phase

In green phase, it is all about writing the quickest piece of code to pass the tests. In this
phase, we should not spend too much making the code clean or refactoring. Though we all
want to write the most beautiful piece of code, that is not the task at hand in this phase. The
result of this phase is green tests.

Refactor phase

In refactor phase, we focus on making the code clean. Since we have tests created above to
guard bugs from side effects, we gain confidence for carrying out refactor. If by chance, a
bug is introduced from refactoring, our tests will report it as soon as it appears. So the

natural way of refactor is to run the test as soon as you have modified any code.

PHPUnit

TDD lets us test drive our development cycle. When practicing TDD in PHP, obviously we
need to define the kind of test we will do. The most common test in TDD is Unit Test which
tests the smallest testable parts of an application it considers a unit, which is typically a class
method.

Now imagine writing unit tests manually and building an automated method to run them. It is
definitely a lot of work. Fortunately, there are already unit testing frameworks out there for us
to use. Among a number of unit testing frameworks, PHPUnit is the most popular one and it
is widely used in the PHP community.

Getting started with PHPUnit

Installation

The easiest way to install PHPUnit is via Composer. Open up your terminal and in your
project folder, simply run composer require phpunit/phpunit . By default, the bin file of
PHPUnit will be placed into vendor/bin folder, so we can run vendor/bin/phpunit directly
from our project's root folder.

Your first unit test

Time to create your first unit test! Before doing so, we need a class to test. Let's create a
very simple class called Calculator and write a test for it.

Create a file with the name of Calculator.php and copy the code below to the file. This
Calculator class only has an Add function. :

<?php
class Calculator

{

public function add($a, $b)
{

return $a + $b;

}

Create the test file CalculatorTest.php, and copy the code below to the file. We will explain
each function in details.

<?php
require 'Calculator.php';

class CalculatorTest extends PHPUnit_Framework_TestCase

{

private $calculator;

protected function setUp()

{
$this->calculator = new Calculator();
}
protected function tearDown()
{
$this->calculator = NULL;
}
public function testAdd()
{
$result = $this->calculator->add(1, 2);
$this->assertEquals(3, $result);
}

Line 2: Includes class file Calculator.php. This is the class that we are going to test
against, so make sure you include it.

Line 8: setup() is called before each test runs. Keep in mind that it runs before each
test, which means, if you have another test function, it too will run setup() before.
Line 13: Similarto setup() , tearbown() is called after each test finishes.

Line 18: testadd() is the test function for add function. PHPUnit will recognize all
functions prefixed with test as a test function and run them automatically. This function
is actually very straightforward: we first call Calculator.add function to calculate the
value of 1 plus 2. Then we check to see if it returns the correct value by using PHPUnit
function assertEquals.

The last part of the task is to run PHPUnit and make sure it passes all tests. Navigate to the
folder where you have created the test file and run the commands below from your terminal:

vendor/bin/phpunit CalculatorTest.php

You should be able to see the successful message as below:

local:TDD xu$ vendeor/bin/phpunit CalculatorTest.php
PHPUnit 5.0.9 by Sebastian Bergmann and contributors.

1/ 1 (100%)

Time: 40 ms, Memory: 2.50Mb

Data Provider

When to use data provider

When we write a function, we want to make sure it passes a series of edge cases. The same
applies to tests. This means we will need to write multiple tests to test the same function
using different sets of data. For instance, if we want to test our Calculator class using
different data, without data provider, we would have multiple tests as shown below:

<?php
require 'Calculator.php';

class CalculatorTest extends PHPUnit_Framework_TestCase

{

private $calculator;

protected function setUp()

{
$this->calculator = new Calculator();

}

protected function tearDown()

{
$this->calculator = NULL;

}

public function testAdd()

{
$result = $this->calculator->add(1, 2);
$this->assertEquals(3, $result);

}

public function testAddwithzero()

{
$result = $this->calculator->add(0, 0);
$this->assertEquals(0, $result);

}

public function testAddwithNegative()

{
$result = $this->calculator->add(-1, -1);
$this->assertEquals(-2, $result);

}

}

In this case, we can use data provider function in PHPUnit to avoid duplication in our tests.

How to use data provider

A data provider method returns a variety of arrays or an object that implements the Iterator
interface. The test method will be called with the contents of the array as its arguments.

Some key points to keep in mind when using data provider are:

e Data provider method must be public.
e Data provider returns an array of a collection data.
e Test method use annotation(@dataProvider) declares its data provider method.

Once we know the key points, it is actually quite straightforward to use data provider. First,
we create a new public method, which returns an array of a collection data as arguments of
the test method.Then, we add annotation to the test method to tell PHPUnit which method
will provide arguments.

Add data provider to our first unit test

Let's modify our tests above using data provider.

<?php
require 'Calculator.php';

class CalculatorTest extends PHPUnit_Framework_TestCase

{

private $calculator;

protected function setUp()
{

$this->calculator = new Calculator();

protected function tearDown()

{
$this->calculator = NULL;

public function addDataProvider() {
return array(
array(1,2,3),
array(0,0,0),
array(-1,-1,-2),
)

/**
* @dataProvider addDataProvider
*/
public function testAdd(%$a, $b, $expected)

{
$result = $this->calculator->add($a, $b);
$this->assertEquals($expected, $result);

e Line 18: Add a data provider method. Take note that a data provider method must be
declared as public.
e Line 27: Use annotation to declare the test method's data provider method.

Now, run our test again and it should pass. As you can see, we have utilized data provider to
avoid code duplication. Instead of writing three test methods for essentially the same
method, we now have only one test method.

Test Double

When to use test double

As mentioned in the first part of this series. One of PHPUnit's powerful features is test
double. It is very common in our code that a method of a class calls another class's method.
In this case, there is a dependency between these two classes. In particular, the caller class
has a dependency on the calling class, but as we already know from part 1, unit test should
test the smallest unit of functionality. In this case, it should test only the caller function. To
solve this problem, we can use test double to replace the calling class. Since a test double
can be configured to return predefined results, we can focus on testing the caller function.

Types of test doubles

Test double is a generic term for objects we use, to replace real production ready objects. In
our experience, it is very useful to categorize test doubles by their purpose. It not only
makes it easy for us to understand the test case, but also make our code friendly to other
parties.

Accordingly to Martin Fowler's post, there are five types of test double:

e Dummy objects are passed around but never actually used. Usually they are just used
to fill parameter lists.

e Fake objects actually have working implementations, but usually take some shortcuts,
which make them not suitable for production.

e Stubs provide canned answers to calls made during the test, usually not responding at
all to anything outside what's programmed in for the test.

e Spies are stubs that also record some information based on how they were called. One
form of this might be an email service that records how many messages it was sent.

e Mocks are pre-programmed with expectations that form a specification of the calls they
are expected to receive. They can throw an exception if they receive a call they don't
expect and are checked during verification to ensure they received all the calls they
were expecting.

How to create test double

PHPUnit's method getMockBuilder can be used to create any similar user defined objects.
Combining with its configurable interface, we can use it to create basically all five types of
test doubles.

Add test double to our first unit test

It is meaningless to use test double in our calculator test case, since currently the Calculator
class has no dependency on other classes, however, to demonstrate how to use test double
in PHPUnit, we will create a stub Calculator class and test it.

Let's add a test case called testWithStub to our existing class:

public function testWithStub()

{
// Create a stub for the Calculator class.
$calculator = $this->getMockBuilder('Calculator')
->getMock();
// Configure the stub.
$calculator->expects($this->any())
->method('add"')
->will($this->returnvalue(6));
$this->assertEquals(6, $calculator->add(100,100));
}

e getMockBuilder() method creates a stub similar to our Calculator object.
e getMock() method returns the object.

e expects() method tells the stub to be called any number of times.

e method() method specifies which method it will be called.

¢ will() method configures the return value of the stub.

We have introduced some basic usage of PHPUnit, which provides almost all the features
we would need to create unit tests. You should always try to find more information from its
official manual as you needed.

TDD by example

In this section, we will demonstrate the process behind TDD through a very simple example.
You should concentrate on how the three phases of TDD are carried out in this example.

Suppose we are given a task of building a price calculator for our e-commerce system. The
class we are going to develop will be PriceCalculator. Let's first setup the project's folder
and file structure as well as its dependencies.

As usual, we will use Composer as our package manager and PSR-4 as our code standard.
The only third party dependency is PHPUnit. To set things up, we will create a folder src for
placing our source files, and a folder tests for placing test files. We will also create
src/PriceCalculator.php and tests/PriceCalculatorTest.php respectively. Finally, we will
create a composer.json file as below:

{
"require": {
"phpunit/phpunit": "A5.0"
H
"autoload": {
"psr-4": {
"Dilab\\Order\\": "src"
}
}
}

This file tells Composer to download PHPUnit and tells autoloader that our source code
follows PRS-4 standard.

By running command composer install, we should end up with a folder structure as below:

- src
+-- PriceCalculator.php
- tests
+-- PriceCalculatorTest.php
- vendor
+-- dependency-1
+-- dependency-2
+-- dependency-3
+-- dependency-xxx
- composer.json
- composer.lock

+ + — — — — + — + — 4 -
1 1 1 1 1

The final piece we need for the setup is a phpunit.xml file to config PHPUnit. Let's create it
as the folder root.

<?xml version="1.0" encoding="UTF-8"?>
<phpunit backupGlobals="false"
backupStaticAttributes="false"
bootstrap="vendor/autoload.php"
colors="true"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
processIsolation="false"
stopOnFailure="false"
syntaxCheck="false">
<testsuites>
<testsuite name="Test Suite">
<directory suffix=".php">./tests/</directory>
</testsuite>
</testsuites>
</phpunit>

Ouir final folder structure should be as shown below:

+-- src

| +-- PriceCalculator.php
+-- tests

| +-- PriceCalculatorTest.php
+-- vendor

| +-- dependency-1

| +-- dependency-2

| +-- dependency-3

| +-- dependency-xxx

+-- composer.json

+-- composer.lock

+-- phpunit.xml

Red phase

At this phase we will plan how our API will look like and create failing test. In this example,
the required APl method is very simple. We just want a method that accepts an array as its
parameter and calculate the total price. We will name this method total .

Let's create some tests in tests/PricecalculatorTest.php file before we write any source
code.

<?php

namespace Dilab\Order\Test;

use Dilab\Order\PriceCalculator;

class PriceCalculatorTest extends \PHPUnit_Framework_TestCase
{

private $PriceCalculator;

public function setUp()

{
parent::setUp();
$this->PriceCalculator = new PriceCalculator();
}
public function tearDown()
{
parent::tearDown();
unset($this->PriceCalculator);
}
/**
* @test
*/
public function object_can_created()
{
$priceCalculator = new PriceCalculator();
$this->assertInstanceOf('Dilab\Order\PriceCalculator', $priceCalculator);
}
/**
* @test
*/
public function should_sum_price()
{
$items = [
['price' => 100],
['price' => 200],
1;
$result = $this->PriceCalculator->total($items);
$this->assertEquals(300, $result);
}
/**
* @test
*/
public function empty_items_should_return_zero()
{

$items = [];

$result = $this->PriceCalculator->total($items);

$this->assertEquals(0, $result);

We have created three tests for PriceCalculator:

® public function object_can_created() : This test assures the object can be instantiated.
Some may argue that this is unnecessary, but from a TDD point of view, we like to have
such a simple test. When this test is passed, we can naturally move on to ones testing
its real behaviour.

® public function should_sum_price() : This method tests whether total method does
its job as described.

® public function empty_items_should_return_zero() : This method tests an edge case,
where there is no item in the order. In such case, total method should return zero.

Now if we run vendor/bin/phpunit from terminal, we should get error as expected as below:

Fatal error: Class 'Dilab\Order\PriceCalculator' not found in tests/PriceCalculatorTest.p

| S— >

Green phase

The task of this phase is to make the failing tests above pass with the easiest but not
necessarily the best code. The ultimate goal of this phase is the green message.

The implementation is fairly easy. All we need to do is to sum up the value with a foreach
loop.

<?php
namespace Dilab\Order;

class PriceCalculator

{

public function total($items)

{
$total = 0;
foreach ($items as $item) {

$total += $item['price'];

}
return $total;

}

Now if we run vendor/bin/phpunit from terminal, we should get a green message as below:

local:TDD xu$ vendor/bin/phpunit
PHPUnit 5.0.9 by Sebastian Bergmann and contributors.

3/ 3 (100%)

Time: 78 ms, Memory: 2.75Mb

Refactoring phase

This is the final phase of TDD, which we believe is the most valuable part of TDD. In this
phase, we will take a look at the code we have written previously, and think of ways to make
it cleaner and better.

We are using a foreach loop inside total method. It loops through sitems array and
returns the sum of the each individual element. This is actually a perfect use case of

array_reduce method. Function array_reduce iteratively reduces the array to a single value
using a callback function. Let's refactor our code by replacing foreach loop with

array_reduce

public function total($items)

{
return array_reduce($items, function ($carry, $item) {
return $carry + $item['price'];
}, 0);
}

If we run our tests again and they all still pass, we are good to go. Because we need to run
the tests constantly to make sure refactoring does not break anything, it is important to keep
our code fast.

We have cleaned up our code from five lines to two lines. There is no more temporary
variable. The method has become easier to debug. There might not be apparent benefits for
doing so in this example, but imagine this in a large scale project, even cleaning up one line
of code could potentially make development easier.

This is the end of TDD. To emphasize again, the spirit of TDD is to let tests drive our
development. Using PHPUnit in a project does not necessarily make it a TDD driven project.
It is the three phases processes involved in the development that make it TDD.

	Introduction
	Composer
	Package Manager
	Composer vs PEAR
	Install Composer
	Use Composer
	Power of community

	PSR
	PSR-0 & PSR-4
	PSR-1 & PSR-2
	PSR-3 & PSR-7
	PSR Specifications

	PDO
	Why use PDO?
	Running PDO Queries
	Data manipulation
	PDO API

	Iterator
	Your first iterator class
	Why iterator?
	SPL Iterators
	ArrayObject vs SPL ArrayIterator
	Iterating the File System
	Peeking ahead with CachingIterator
	Generator

	Exception
	When to use Exception
	How to use Exception
	Create your first custom exception
	SPL exceptions
	RuntimeException

	TDD
	PHPUnit
	TDD by example

